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Abstract—In the past Science Planning for space missions 
has been comprised of using ad-hoc software tools collected 
or reconstructed from previous missions, tools used by other 
groups who often speak a different “technical” language or 
even “the backs of envelopes.” In addition to the tools being 
rough, the work done with these tools often has had to be 
redone or at least re-entered when it came time to determine 
actual observations. Science Opportunity Analyzer (SOA), a 
Java-based application, has been built for scientists to 
enable them to identify/analyze observation opportunities 
and then to create corresponding observation designs for 
orbiting, astronomical (telescope), and flyby missions.  
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1. INTRODUCTION1 
Spacecraft mission operations is comprised of diverse teams 
competing for the limited resources of a spacecraft. Each 
team has its goals and its “own language.” Flight teams talk 
about spacecraft commands and command parameters. 
They’re involved with hardware components and computer 
transactions. Science teams are concerned with science 
objectives, physical phenomena, celestial bodies and their 
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instruments on the spacecraft. What has been missing is a 
software tool that allows scientists to plan and develop their 
observations using the terms that are meaningful to them. At 
the same time this tool must communicate with project 
software in terms of commands and command parameters. 
Finally, the tool must be able to support a wide-variety of 
missions. Science Opportunity Analyzer (SOA), a Java-
based application, has been built to meet these needs. 
 

2. SCIENCE OPPORTUNITY ANALYZER 
SOA supports science mission operations for orbiting, 
astronomical (telescope), and flyby missions. At Jet 
Propulsion Laboratory (JPL) mission operations is divided 
into two basic categories: mission planning and mission 
sequencing. Mission planning starts with very high level 
plans having blocks of time set aside for spacecraft 
trajectory correction maneuvers, for observations, and for 
sending data to earth for an entire mission and ends with the 
building of a detailed set of spacecraft activities and science 
observations. Mission sequencing takes those activities and 
observations and turns them into spacecraft commands. 
SOA can be used for all aspects of the science portions of 
mission planning, but is primarily for use towards the end of 
that phase where the scientist is determining and developing 
science observations. SOA is the first multi-mission tool to 
allow the science user to enter those observations into the 
front-end of the spacecraft command pipeline using science 
friendly terminology and an intuitive graphical user 
interface and then send the observations to downstream 
software that will turn them into spacecraft commands. It 
has been built with communications to other “uplink” 
software tools in mind. 
 
In addition to allowing the observation to be sent to 
downstream software, SOA permits scientists to look for 
opportunities of geometric interest (Opportunity Search). It 
also contains features to allow them to analyze their 
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observation to see if the observation meets both the desired 
science objectives and with reality. Various views can be 
displayed at user-selected times to examine the geometry of 
a user-selected target (Visualization). The user can also 
view that information with one or more instrument fields of 
view projected onto the target. A field of view (FOV) is one 
of the apertures of a given instrument. If the display of the 
selected time is promising, the scientist can begin to create 
an observation and then view the observation (Observation 
Design). If further investigation of the observation is 
needed, the user can get observation or trajectory related 
data to help in making the decision whether to keep this 
observation or to change to another time (Data Output). The 
data regarding the spacecraft trajectory can be retrieved at 
any point in the process. Finally, the scientist can check the 
observation to make sure that it does not violate any 
constraints such as “too much bright light exposure” on a 
sensitive instrument (Constraint Checking). Along with the 
ability to communicate with other tools (Communication), 
SOA provides a convenient package of functional 
capabilities in one generic multi-mission tool. 
 
In the following paragraphs an example of one path that a 
user will typically take is presented along with pictures of 
the screen displays that the user will see. This path can have 
variations based on the user’s needs and desires, but the path 
is ultimately one that will end in a science observation that 
is placed into the plan of activities to be sent to the 
spacecraft. The path will be called the Science Observation 
Planning Process in this paper. 
 
SOA is configurable to a specific mission. This process is 
called “adaptation”. Adaptation adds the mission specific 
data for SOA to work with. This mission specific data will 
include flight rules, observation types, physical phenomena 
models, celestial body data, instrument data, spacecraft-
specific data and a spacecraft trajectory. Much of this data 
can be provided through the use of JPL navigation files. 
 

3. INITIALIZATION (GLOBAL/KERNELS) 
Step 1— 
(Required) The user runs an SOA configuration file. 
(Note: The configuration file is a Java Bean shell script that 
is executed by the Java Runtime Environment.) 
 
Even though initializing SOA isn’t part of the Science 
Observation Planning Process it is a necessary step for SOA 
to have data to work with. The user can select, edit or run a 
configuration file. The configuration file selection is under 
the Global/Kernels tab. The configuration file determines 
the spacecraft, spacecraft data and spacecraft trajectory to 
use, instrument data, planetary constants information, 
opportunity searches that are available, many of the defaults 
in SOA including the seeding of the default time windows, 
and other initialization components. The configuration file 
is a Java Bean shell script and as such is executed by the 
Java Runtime Environment. Once the configuration file is 
run, the color-coding of the SOA main screen changes from 
red to various other colors so that the user can tell visually if 

a necessary item is missing. Figure 3.1 shows SOA prior to 
running the configuration file (all buttons and tabs are red) 
and Figure 3.2 shows SOA after running the configuration 
file (all buttons and tabs have changed color and none are 
still red). 
 
Often this configuration file will be built by the project as 
part of the adaptation of SOA. In this case, the user will 
simply run the file that is delivered with the software. The 
SOA User’s Guide that is delivered with SOA at each 
release describes in detail how to modify the configuration 
file. The SOA User’s Guide has been written by a scientist 
to ensure that the science user community can easily 
understand it. 
 

4. OPPORTUNITY SEARCH 
Step 2— 
(Required) The user finds one or more windows of 
opportunity for an observation based on specified geometric 
criteria.  
 
Initially, in the Science Observation Planning Process, the 
scientist wants to find observation opportunities that meet 
specific geometric criteria. The Opportunity Search tab 
allows the user to find when the desired geometric criteria 
are met. On this display (Figure 4-1) the scientist either 
selects to build a search query or to load previously built 
queries from a file. If the search query is new the user is 
presented with the search query builder window 
(Figure 4-2). The list of available queries is loaded at 
runtime and appears in the upper right hand side of the 
query builder window (Figure 4-2). The list has over 30 
query types that include such things as eclipses, distance 
from a specified celestial body, periapse events, transits, etc. 
The user selects the desired query from the list and simply 
drags it into the graphical query window.  Now the query’s 
properties (such as search time window, celestial bodies 
involved, etc.) can be customized for the selected search. 
Once the search query is built the user selects it and presses 
a button for the search to begin. 
 
SOA allows the user to create either a simple search query 
or a complicated one. The user can use the relational 
operators of “and,” “or,” or “not” to create complex queries. 
The graphical query window helps the user to keep track of 
the relationships by building a tree so that the user can see 
their relationship. The scientist doesn’t have to remember 
complicated command line syntax for either type of search 
query. That complexity is handled by SOA. SOA creates the 
correct command line syntax for the search engine specified 
by the scientist and sends the information directly to that 
search engine via inter-process communication. 
 
SOA has two search engines that process the search queries. 
These search engines work as root finders on continuous 
functions. Some queries result in a single time (like a 
periapse) and others result in time windows (like an 
occultation). The search engine returns the resultant time(s) 
when the search criteria are met. The windows of 
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opportunity are displayed for the user. The user now has a 
choice of selecting to see a display of that time, save the 
results to a file, see data related to a result window, begin an 
observation design or do any combination of these four. 
SOA always allows the user to save his/her work to files for 
future recall. 
 

The delivered SOA currently contains all of the search 
criteria types. Generally, a mission will not have to perform 
any adaptation for this area of SOA. If a search doesn’t 
apply to a given project, it can simply be removed. A project 
can also use a different search engine, but then more 
adaptation work will have to be done. That work is 
described in the SOA Adaptation Guide delivered with the 
software.

 

 
 

Figure 3-1. Initial SOA Global/Kernals Tab display with Configuration File Selection Box open. 
 

 
 

Figure 3-2. Global/Kernals Tab display after configuration file has been run. 
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Figure 4-1. Opportunity Search Tab display with the Enceladus Flyby query selected and  
the resultant search windows displayed. 

 

 
 

Figure 4-2. Opportunity Search Query Builder display with an Enceladus flyby query. 
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5. OBSERVATION DESIGN 
Step 3— 
(Required) The user selects a time window and begins to 
design an observation. 
 
Step 4— 
(Optional) The user views the design in a visualization 
window. 
 
Prior to this step the user may have selected a time from the 
Opportunity Search Results and selected to view an SOA 
display at that time (as stated in the previous section), but 
the user may have created the search criteria in such a way 
that any resultant window is a candidate to use to perform 
the observation design. The Observation Design tab allows 
the scientist to begin the design.  

The scientist can select to simply look at a time with a 
single instrument field of view (FOV) to get a visual idea of 
the “landscape” or he/she can select to create one of the four 
different types of observations. The simple view is called a 
“scoping” activity and shows the user a view from a specific 
spacecraft attitude. This type of observation usually doesn’t 
contain enough information to be sent to downstream 
software, but it can give the scientist an idea of whether or 
not this observation is worth pursuing. It has very few 
properties (parameters) and requires very little of the user’s 
time to specify while providing the user with a significant 
amount of visual information. Figure 5-1 shows the 
Observation Design display with a scoping-level activity 
specified.

 
 

 
 

Figure 5-1. The Observation Design Tab display showing an Enceladus scoping level observation with  
constraint violations (the orange button with the date in the center of the display). 
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At any point the scientist can begin or continue working on 
a previously saved observation design. The four basic types 
of observations are: 

1. Start Stop Mosaic 
2. Continuous Scan 
3. Roll Scan 
4. Stare 

A Start Stop Mosaic observation is one in which the 
spacecraft or scan platform moves to a series of locations, 
stops (or dwells) at each location and performs an 
observation at each of these locations. Then it moves to the 
next location and performs the next observation. A remote 
sensing instrument such as a camera normally uses this type 
of observation. The Start Stop Mosaic has also been called a 
box scan or an N by M mosaic. The Continuous Scan 
observation is similar to the Start Stop Mosaic, but for this 
observation the spacecraft or scan platform is continuously 
moving while observations are being performed. Remote 
sensing instruments such as spectrographs or spectrometers 
often use this type of observation. The Roll Scan 
observation is an observation where the spacecraft generally 
rolls about a single axis. However, it is conceivable that the 
rolling could be about some sort of platform or other 
mounted device that allowed an instrument the freedom to 
spin. Fields and Particles In Situ instruments extensively 
utilize this type of observation. Finally, the Stare 
observation is one where the spacecraft or scan platform 
tracks a single target direction for the duration of the 
observation. Instruments of all types use this category of 
observation. 
 
Each of these observations has its own set of properties 
(parameters). However, some of the properties are common 
to all such as the start time of the observation, the planned 
duration of the observation, the target, the observer and any 
time margins used to make sure that the observation fits into 
its allotted time frame. Other properties are specific to the 
type of observation. Some examples of properties for 
specific observation types are: 

1. Start Stop Mosaic: the number of footprints per scan 
and the total number of footprints.  

2. Continuous Scan: the number of scans (or rows). 
3. Roll Scan: the roll axis. 
4. Stare: the actual stare duration. 
 
Projects may have their own variations of these activities or 
maybe even an activity type that is completely different 
from the ones provided. SOA has been built using a 
hierarchical structure so that new or variations of existing 
observation types can be created. Performing observation 
adaptation is also described in detail in the SOA Adapter’s 
Guide.  
 
After the scientist has filled in the properties, he/she will 
want to view a display of the celestial bodies and the 
observation. SOA has four types of display: 3-dimensional 
perspective projection, 3-dimensional arbitrary observer, 

2-dimensional sky map and 2-dimensional trajectory view. 
The 3-dimensional perspective projection (Figure 5-2) is a 
3-dimensional view of the target from the point of view of 
the observer. The 3-dimensional arbitrary observer is a 3-
dimensional view that is a parallel projection of the target 
from an observer that can be arbitrarily placed in space. The 
2-dimensional sky map is an equidistant cylindrical 
projection of the celestial sphere as viewed from the 
spacecraft. Finally, the 2-dimensional trajectory view is a 
view of the spacecraft trajectory around a target in either the 
ecliptic or the equatorial plane. If the target has satellites 
their orbits can also be shown. Each of these displays can be 
animated over the time span of the observation. The 
scientist can choose to see all of the fields of view that form 
the observation at one time or to see them as they are 
performed during the animation. The scientist can also look 
at more than one view at a time on a single screen 
(Figure 5-3) or have multiple screens displaying the same or 
different views (Figure 5-4). Each viewer window has data 
to allow the user to obtain more information about the 
observation quickly, and also has controls to allow the user 
to customize the view of the observation as well as to 
animate it. 
 
On the left-hand side of the visualization window the data 
display gives the scientist information such as the range to 
the target and the right ascension and declination of various 
points of interest. Below the data display, the user can use 
the Settings Panel to make display objects visible or 
invisible. Additionally, the user can also change properties 
of display objects such as color, line width, font, etc. as they 
are applicable for that object. The last items on the left hand 
side are the animation controls. The user can control the 
animation through the use of these text entry slots and 
buttons.  
 
On the right hand side the user has a series of sliders. These 
sliders allow the scientist to control the amount of rotation 
in x, y and z of the current view. The bottom slider allows 
the user to zoom in or out on the current display. If the 
sliders are not available for use in a particular view (such as 
the 2-dimensional trajectory plot) they are grayed out. 
 
Most of the needed basic graphics primitive objects are 
provided currently in SOA. A hierarchical structure similar 
to the one provided for other adaptable items is available for 
the graphics primitive objects as well. The low-level 
graphics primitive objects can be combined to form most 
any display object that is needed by a project. Currently, 
meshes and 3-dimensional volume rendering objects are not 
available, but those objects are to be developed for future 
versions of the software. 
 
A scientist can remain in the observation design area until 
the observation is completed and all of the observation 
objectives are met or he/she can proceed to the next step at 
any point while creating the observation and then return to 
observation design as needed. The next step in the process is 
constraint checking. 
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Figure 5-2 A 3-D perspective view of the Enceladus observation.  
The yellow rectangle around Enceladus is the field of view of a spectrograph. 

 

 
 

Figure 5-3. A 3-D perspective view and a 3-D arbitrary observer view of closest approach to Enceladus. Note that the 
Cassini spacecraft appears in the 3-D arbitrary observer view as well as the spacecraft trajectory. 
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Figure 5-4 Two-viewers are displayed. The top one shows a 3-D Arbitrary Observer view with Saturn as the target.  
It shows the spacecraft trajectory by Enceladus. The bottom one shows the 2-D SkyMap view at this time. 

 
 

6. CONSTRAINT CHECKING 
Step 5— 
(Required) The user checks to see if any constraints have 
been violated. 
 
Now the scientist wants to make sure that the observation 
meets with the rules that the project has provided. These 
rules are often called flight or mission rules. Rules are 
checked at the observation level. In downstream software 
used for sequencing the rules are checked at a command 
level. In SOA rules come in two varieties: geometric or 
dynamic. The geometric rules are generally ones that have 
to do with exclusion zones (such as the avoiding pointing a 
delicate camera lens at the Sun). The dynamic type has to do 
with illegal spacecraft states (such as requiring the 
spacecraft to exceed its maximum turn rates).  
 
The exclusion zone rules have several flavors. The zone is 
generally an angle that forms a region where there’s a bright 
body that must be avoided in order not to damage an 
instrument. Sometimes if the instrument is far enough away 
from the bright body, then the light is not harmful. In this 
case the rule can specify both the angle and the distance that 
are to be avoided. Finally, the instrument may only be 
harmed if it is exposed for a given period of time. In this 
case exposure times less than the specified time are not 

harmful. These rules can be created using any combination 
of the three items: angle, distance, and exposure time. 
 
The dynamic rules deal with placing the spacecraft in an 
illegal state. For SOA generally that means exceeding 
maximum spacecraft rates and/or accelerations or not 
meeting minimum spacecraft rates and/or accelerations. 
These rates can apply to the spacecraft, a scan platform or 
an instrument. Individual rules and rates can be created for 
each of the pieces of hardware that must be checked.  
 
Before actually selecting to check the rules, they have to be 
built. The user can select to build new rules or use the ones 
that the project has supplied through adaptation. The rules 
are created using a drag-and-drop builder screen 
(Figure 6-1) similar to the search criteria builder in 
Opportunity Search. The rule type is selected and dragged to 
the graphical rule-building window. To enter the rule 
values, the user just clicks on the graphical rule box and the 
specifics for that rule can be entered at the bottom of the 
screen. In addition to creating simple rules, SOA also allows 
the user to create complex rules using the logical operators 
of “and” and “or.” 
 
In the main Rule tab (Figure 6-2) the user has the option of 
enabling all of the rules to be checked, none of the rules to 
be checked or some but not all of the rules to be checked. 
After the rules have been built and the ones that are to be 
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checked have been enabled, the user can save these rules to 
an XML formatted file for future recall. The project may 
have delivered a project set of rules and the user may not 
need to build or enable any rules. 

If the user wishes to create additional rules, the user may do 
so and create his/her own file that can then be loaded in 
addition to the project’s rules . The user simply adds this 
new set to be loaded using the configuration file.

 

 
 

Figure 6-1. The Flight Rule Builder display shows an Angle Rule being built. 
 

 
 

Figure 6-2 The Flight Rule Tab display shows the Enceladus Angle Rule selected to be checked when the  
Check Constraint button is selected. Figure 5-1 shows the results of checking this flight rule. 

 
 
Once the rules have been loaded, the user simply returns to 
the Observation Design tab and presses the constraint check 
button. SOA checks all of the enabled constraints and 
returns with a message that either violations were or were 
not found. If violations are found, they are listed in the 
constraint log that pops up when the orange constraint 

violation button is pressed (see Figure 5-1 in the previous 
section). If no violations are found the constraint violation 
button stays gray and says “no violations.” In addition, if the 
user displays a visualization of the observation, the 
footprint(s) that are in violation are indicated in red. 
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In most cases projects can use the rule builder screen to do 
all of their adaptation. One project using SOA has been able 
to create 20 rules in one hour with the rule builder. If the 
project has rules that are not supported by the rule builder, 
SOA provides a similar hierarchical structure in order for 
project adapters to add new rule types or new rule building 
blocks. 
 

7. DATA OUTPUT 
Step 6— 
(Optional) User selects and views output data to ensure 
observation viability 
 
At any point in the process the scientist can view output data 
produced by SOA. The Data Output tab (Figure 7-1) allows 
the user to select the time, the type and kinds of output data 
to be viewed as well as allowing the selection of viewing the 
data in tabular or graphical form. There are three types of 
data output: (1) spacecraft trajectory related data, (2) 
opportunity search results data, and (3) observation related 
data. 
 
The Spacecraft Trajectory Related Data option allows the 
user to select output that relates to data that can be 
determined without the user having to specify an instrument 
field of view (FOV). These data can be determined by 
simply knowing the spacecraft path. Certain physical 
phenomena model information, the sub-spacecraft point and 
other information that doesn’t require FOV information can 
be requested. 

 
Opportunity Search Results Related Data option allows the 
user to select data that pertains to the results of a particular 
opportunity search criteria. Again this information doesn’t 
require knowing a particular instrument FOV to obtain. 
 
The Observation Design Related Data option allows more 
information to be requested. In this option the user can 
specify data that is calculated based on the instrument FOV 
such as emission angle. The emission angle (or viewing 
angle) is an angle calculated between a FOV intercept with 
the target and the spacecraft’s intercept with the target. In 
order to calculate this information, the observer field of 
view data must be known. 
 
All three types of data can be requested in a tabular file 
format. The resultant file can be placed in a commercial 
spreadsheet and analyzed. The data can also be presented in 
a graphical format (Figure 7-2). In this case the scientist has 
a choice of how the graphs are to be arranged. The choices 
are: stack plot (one or more plots per window), x/y or x/y/z 
plot (a single plot per window) or all-in-one plot (all data 
items appear in a single plot in a single window). 
 
As with all of SOA the project can choose to use the data 
output items that SOA has provided or the project adapters 
can create additional types of data output and hook those 
into the hierarchical structure that SOA uses. The data 
output that can be specified currently in SOA is generally 
sufficient for most projects. 

 

 
 

Figure 7-1. The Data Output Tab display shows the data items available for selection in  
the area of Spacecraft Trajectory Related Data. 
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Figure 7-2. The Graphing/Plotting  tool shows x/y data in a stacked graph. 
 

 
8. COMMUNICATION 

Step 7— 
(Required) The user saves the observation for further recall 
and sends it to downstream software to be added to the plan 
of spacecraft activities. 
 
At this point the observation has been designed and checked 
against both the user’s requirements and against constraints. 
It meets the science objectives and is ready to be saved for 
further recall. SOA allows the scientist to save the 
observation in multiple formats. The choices are:  

1. SOA format 
2. Downstream software format that has been specified in 

a JPL interface control document. 
3. Pointing information format 

SOA can read and write all three formats. SOA can, of 
course, process its own file data. The downstream software 
format saves information to a file that downstream legacy 
software can change into commands. The pointing 
information format is a binary file that is widely used called 
a C-kernel. This file can be used to exchange information 
among scientists. 
 

After the observation has been saved, it is time to add it to 
the plan of activities that are going to the spacecraft. SOA is 
one of the first software tools to be created with communi-
cation to downstream software as part of its design. SOA 
uses both interprocess communication and files to commu-
nicate with downstream planning and sequencing software. 
The user simply uses the Communications tab (Figure 8-1) 
to set-up an interprocess communications link with the 
planning software or creates a file that can be read by the 
legacy sequencing software. 
 
This area requires the most adaptation. In order for the 
information to be sent to the downstream software, 
adaptation methods need to be written so that all the tools 
understand the data that is being sent. An SOA observation 
will correspond with a specific project “spacecraft activity” 
that the planning and sequencing software understands. A 
correspondence between an SOA observation and this 
project-specific spacecraft activity is created using the same 
hierarchical structure that SOA has used throughout for 
adaptation. This area is explained in detail in the Adapter’s 
Guide. 
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Figure 8-1. The Communications Tab display shows the communications connection any message  
being sent to downstream software using inter-process communications. 

 
 

9. SUMMARY 
SOA provides a full suite of tools to support scientists in 
building their observations. To recap the typical Science 
Observation Planning Process consists of the following 
steps: 
1. The user runs an SOA configuration file to select the 

spacecraft and spacecraft trajectory data to be used.  
2. The user finds one or more windows of opportunity for 

an observation based on geometry criteria using SOA’s 
Opportunity Search capability. 

3. The user designs the observation using the SOA 
Observation Design capability. At this point the user 
will often want to see Visualization displays. The user 
may even want to view an animation of the observation. 

4. The user can also check to see if any constraints have 
been violated with this observation using the SOA 
Constraint Checking capability. The constraints are 
checked at the observation level against either 
geometric (i.e., Sun exclusion zones) or dynamic (i.e., 
spacecraft rates) rules. 

5. At any point in this process the user can view 
associated data such as a phase angle using the Data 

Output capability. Data can be viewed in a tabular 
format, graphically or both. 

6. The scientist saves the observation for future recall. 
Once the observation meets the science criteria and 
doesn’t violate constraints, it can be sent downstream to 
planning software and command-level geometric 
checking software using SOA’s communication 
capability.  

 
SOA allows scientists to work in each of these areas 
emphasizing the data that are important to them and hiding 
details that are necessary to make the software work 
correctly, but are irrelevant to scientists. 
 
In addition, each of the above areas of SOA can be adapted 
to meet the needs of a specific project. However, support in 
the software is provided so that adaptation can be minimal 
from project to project. 
 

10. CONCLUSION 
From the very beginning SOA was designed with the user in 
mind. Extensive surveys of the potential user community 
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were conducted in order to develop the software 
requirements. Throughout the development period, close 
ties have been maintained with the science community to 
insure that the tool maintains its user focus. Although 
development is still in its early stages, SOA is already 
developing a user community on the Cassini project that is 
depending on this tool for their science planning. There are 
other tools at JPL that do various pieces of what SOA can 
do; however, there is no other tool which combines all these 
functions and presents them to the user in such a convenient, 
cohesive and easy to use fashion. 
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